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Abstract 

Explicit complete orthonormal fixed bases are computed 
for subspaces of the space of square-integrable functions 
on the sphere where the subspaces contain functions that 
are totally symmetric under the rotational symmetries of 
a Platonic solid. Each function in the fixed basis is a 
linear combination of spherical harmonics of fixed I. For 
each symmetry (icosahedral/dodecahedral, octahedral/ 
cubic, tetrahedral), the calculation has three steps: First, a 
bilinear equation is derived for the coefficients in the 
linear combination by equating the expansion of a 
symmetrized 8 function in both spherical harmonics and 
the fixed basis functions for the appropriate subspace. 
The equation is parameterized by the location (80, ~00) of 
the 8 function and must be satisfied for all locations. 
Second, the dependence on the 8-function location is 
expressed in a Fourier ((P0) and a Taylor (80) series and 
thereby a new system of bilinear equations is derived by 
equating selected coefficients. Third, a recursive solution 
of the new system is derived and the recursion is solved 
explicitly with the aid of symbolic computation. The 
results for the icosahedral case are important for 
structural studies of small spherical viruses. 

I. Introduction 

Let L2(O, ~o) denote the Hilbert space of square-integrable 
functions on the sphere. We describe a method for 
computing orthonormal fixed bases for subspaces of 
L2(O, ~o) where each subspace contains basis functions 
that transform as a particular row of a particular unitar3y 
irreducible representation of a group ~ of rotations in R . 
We demonstrate the method by applying it to the identity 
representation of the icosahedral group. This particular 
example is of great interest in virus structural studies 
(Liljas, 1991; Zheng, Doerschuk & Johnson, 1995). We 
also state the results for the identity representations of the 
groups of the other Platonic solids. 

In a virus structure problem, the electron density is 
assumed to be invariant under every rotation of the 
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icosahedral group. Such functions form a subspace of 
L2(0, ~0) and a natural way to describe the electron 
density is as a weighted sum of fixed basis functions for 
this subspace, where the fixed basis functions are 
orthonormal in addition to being totally symmetric 
under the rotations of the icosahedral group. Let the 
f'Lxed basis functions be denoted by T~(O, ~0), where ct is 
an index. Because the spherical harmonics (Jackson, 
1975), denoted by Yt,m(O, ~0), are a complete orthonormal 
fixed basis for L2(O, ~o), it is natural to express T~,(O, ~o) as 

+oo +l 
T~(O, ~p) = ~_. ~_. a~j.mYt,m(O, ~p). 

1=0 m=-I 

Then, the goal is to determine a~,t. m. 
The T~(O, ~o) functions are sometimes referred to as 

'icosahedral harmonics' (e.g. Finch & Holmes, 1967; 
Jack & Harrison, 1975; Laporte, 1948). This terminology 
is somewhat different from the terminology used for 
spherical harmonics: for each l, the finite set of spherical 
harmonics Yt,m(O,~o) for m = - l  . . . . .  + l  are basis 
functions of a particular representation of the special 
orthogonal group S03, while the countably infinite set of 
T~(O, ~o) functions are basis functions of only the identity 
representation of the icosahedral group. 

Work on the construction of basis functions for 
various representations of the icosahedral group, includ- 
ing the T~(O, ~o) functions for the identity representation, 
has been done previously by Altmann (1957), Cohan 
(1958), Elcoro, Perez-Mato & Madariaga (1994), 
Heuser-Hofmann & Weyrich (1985), Jack & Harrison 
(1975), Kara & Kurki-Suonio (1981), Laporte (1948), 
Liu, Ping &Chen  (1990), McLellan (1961) and Meyer 
(1954), among others. The approaches used include 
group-theoretical approaches and approaches through 
combining primitive invariant polynomials in the 
Cartesian coordinates. The construction process is very 
laborious, especially for large l, and no explicit formulae 
for T~(O, ~o), or equivalently for a~,t, m, could be given. 
The work described in this paper differs from the 
previous work in the following respects: each T~(O, ~o) is 
a linear combination of Yt,m(O, ~o) for a single fixed l; the 
aa,l, m coefficients of the combination are given by 
explicit formulae in terms of ct, l and m; T,~(O, ~o) and 
T~,(O, ~o) are orthogonal if ct-~ ~ .  Other authors, e.g. 
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Von der Lage & Bethe (1947), have also studied basis 
functions that are a linear combination of Yt,m(O, ¢p) for a 
single fixed I. 

A standard group-theoretical approach to determine 
T~,(O, ¢p) is to apply projection operators (Comwell, 1984, 
pp. 92-94) to the spherical harmonics. For the identity 
representation of the icosahedral group, the projection 
operator has a simple form and a candidate for T,~(O, ¢p), 
that is, the projection operator applied to a particular 
spherical harmonic, is 

59 

Ta(O , qg) -" 1 ~ e(Tk)Yt ,m(O,  qg), ( 1 )  
k=0 

where T k is the kth rotation of the icosahedral group, 
which has order 60, and the scalar transformation 
operator P(T)  applied to a function ~/'(r) is defined by 
P(T)g'(r)  = qJ(T-lr). [We are using the notation of 
Cornwell (1984).] Whi le  this method appears to be 
direct, it has some serious difficulties: First, 

+l  

P(Tk)Yt.m(O , ~p) = ~ Ol,m,m,(Tk)Yl ,m,(O , qg), 
lrlt =--I 

where the Dl,m,m,(Tk)  are  the complicated Wigner D 
coefficients (see theorem 1), so it is difficult to perform 
the sum of (1) analytically for general l and m. Second, 
for a fixed l, Laporte's results (see theorem 2) state that 
there are only N t < 21 + 1 linearly independent T~,(O, ~o) 
that. can be constructed from Yt,m(O, ~o) (m = - l  . . . . .  +l)  
while (1) generates 2l-4-1 candidates. Therefore, N t 
functions must be chosen from among the 21-4-1 
candidates. Furthermore, no set of N t functions from 
among the candidates are guaranteed to be orthonormal, 
so a set of N t linearly independent functions must then be 
orthogonalized by the Gram-Schmidt procedure. This 
orthogonalization is also difficult to perform analytically 
for general l and m. In summary, it is difficult to derive, 
by way of (1), expressions for an orthonormal set of 
T,~(O, ~o) that are explicit functions of the indices. 

Our approach is also based on projections. However, 
rather than projecting a spherical harmonic, as in (1), we 
project a delta function located at spherical coordinates 
(00, ~00), i.e. ~(cos 0 - cos 0o)8(~o - ~o0). The result of the 
projection is a symmetrized delta function denoted by 
za(00, ~00; 0, ~): 

59 

~a(00, ~o0; 0, ¢) = 1 E P(rk)[8(cos 0 - cos 00)8(~o - ¢0)]. 
k=0 

(2) 

This projection is easy to compute because the result of 
applying a rotation to a delta function is just another delta 
function at different coordinates. Furthermore, it is 
straightforward to expand the symmetrized delta function 
A(00, ¢P0; 0, ¢p) as a weighted sum of spherical harmonics: 

c¢ + l  

l-----0 m=-I 

In addition, because the T~(O,~p) are a complete 
orthonormal fixed basis for the subspace of totally 
symmetric functions, we know the expansion of 
A(O0, ¢P0; O, ¢p) as a weighted sum of T~(O, ¢p): 

A(O0, ¢P0; O, ~o) -- ~ T*(O o, ¢Po)T,~(O, ~o). (3) 
o~ 

Finally, by equating (1) and (3), we can derive nonlinear 
equations for the desired weights au,l, m and these 
nonlinear equations can be solved recursively to give 
explicit formulae for the act, l,m. 

In more detail, the program has the following steps: 
(i) Show that the T~,(O, ¢p) can be indexed by two 

integers and expressed in the form 

+l  

Tl,n(O , qg) = ~ bl,n,mrl,m(O, ~) ,  
m=-l 

where l = 0, 1 . . . .  and n = 0 . . . . .  N t - 1. The goal of 
the calculation is to compute bt,m, n. 

(ii) Express a delta function that is totally symmetric 
under the rotations of the icosahedral group in terms of 
Yl,m(O, qg) and in terms of Tt.,,(O, ¢p). 

(iii) Equate the two expansions. 
(iv) From the resulting equality, extract a bilinear 

equation for the bl,n, m coefficients where the equation is 
parameterized by the location on the sphere, denoted by 
(00, ~o0), of the delta function. This equation must be 
satisfied for any choice of (00, ~o0). 

(v) Express both sides of the bilinear equation in a 
Fourier series in ~00 and a Taylor series in 00, which gives 
an equality between two doubly infinite sums. Corre- 
sponding coefficients in the two sums must be equal. 

• (vi) By equating corresponding coefficients of 
04 exp(ik~P0 ) for certain ( j ,  k), derive a second system 
of bilinear equations for the b t . . . .  coefficients. This 
system of equations does not depend on (00, ~o0). 

(vii) Derive a recursive solution for the second set of 
bilinear equations. 

(viii) With the aid of Mathematica,  solve the recur- 
sions to give exact values for the bl,n, m coefficients. 

The remainder of the paper is organized in the 
following fashion. In §§2-6, we derive an orthonormal 
fixed basis for the subspace spanned by basis functions 
that transform as the identity representation of the 
icosahedral group. In §7, we state the corresponding 
results for the groups of the other Platonic solids. Finally, 
in §8, we show how similar ideas could be used to 
compute an orthonormal fixed basis for the subspace 
spanned by basis functions that transform as a particular 
row of a particular unitary irreducible representation of 
the icosahedral group. Such fixed orthonormal bases are 
of interest in a wider range of problems concerning the 
icosahedral group, such as fullerenes (Kratschmer, Lamb, 
Fostiropoulos & Huffman, 1990) and quasicrystals 
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(Elcoro, Perez-Mato & Madariaga, 1994). The results of 
this paper are described in greater detail in Zheng & 
Doerschuk (1994). 

2. The relationship between the icosahedral fixed 
basis functions and spherical harmonics 

Let Yt,m(O, ~o), for l = 0, 1 . . . .  and m = - I  . . . . .  +l ,  be 
spherical harmonics [we use the conventions of Jackson 
(1975)]. It is well known [Jackson, 1975, equation 
(3.53)] that Yt,m(O, qg) : Nt,mPl,m(COs O ) exp(imqg), where 
Pl,m(X) a r e  the associated Legendre functions [Jackson, 
1975, equation (3.49)] and 

N,, m : {[(2/-I- 1)/4rr][(l - m)! / ( l  + m)!]} '/2. 

Spherical harmonics are closely related to rotations. Let T 
be a rotation of three-dimensional space described in 
terms of the Euler angles cz,/3, y and having inverse T -I . 

T h e o r e m  1. Any rotational operation on a spherical 
harmonic Yt,m(O, ~o) will yield a linear combination of 
spherical harmonics of only the same l, that is, 

+1 
P(T)Y,, , , (O, ~o) = ~ Dl,m,m,(Ot , fl, y)Yl,m,(O, qg), 

m'=--l 

where the Dl,m, m, coefficients are Wigner D coefficients 
and have the following definitions: 

Dl,m,m'(Ot, /3, ~/) : exp ( - im 'o t )d t ,m ,m , ( /3 ) exp ( - imy )  
l+m 

dt,m,m,(fl) = ~--]~(- 1)k[(l + m)!(l  - m)!( l  + m')! 
k-----O 

x (l - m')!] l /2/{( l  - m ' -  k)! 

x (1 + m - k)!(m'  - m + k)!k!} 

X [C0S(~/2)]  21+m-m'-2k 

X [-- s i n ( ~ / 2 ) ]  m'-m+2k. 

Proof'. See Rose (1957). 
Our goal is to determine a set of functions T~(O, ~o) 

where the set is a real-valued complete orthonormal fixed 
basis for the subspace of L2(O, ~o) containing functions 
that are totally symmetric under the rotations of the 
icosahedral group. The orthonormality condition is 
f T*~(O, ~o)T~,(O, ~0)dl2 - ~,~,oe, where the complex con- 
jugation is optional since the T~,(O, ~o) are real and 
dO = sin 0 d0 d~o in spherical coordinates. Furthermore, 
we desire that each T,,(O,~o) function is a linear 
combination of Yt,m(O, ~o) for fixed l, as allowed by 
theorem 1. Let N l be the number of T~(O, ~o) that are 
linear combinations of Yt,m(O, ~o) (m = - l  . . . . .  + l )  and 
therefore N t < 21 -t- 1. We def'me the index c~ to be l, n, 
where l = 0, 1 . . . .  and n = 0 . . . . .  N t - 1, and therefore 
the functions have the general form 

+1 

Zl,n(O , qg) : ~ bl,n,mYl,m(O , qg). ( 4 )  
m=-l 

The task of this paper is to find the bl,n,rn coefficients in  
(4). For each l = 0, 1 . . . .  , there are N / sets of 21+  1 
coefficients. 

Laporte (1948) proves the following result regarding 
N~: 

T h e o r e m  2. For l even, the number Nt is given by the 
generating function 

(:XP 

1/[(1 - x 6 ) (  1 - x l ° ) ]  --- ~-~ N x 2t, Z.~ 2l 
1=0 

while, for l odd, the number N t is 

Nt_ls ,  l >  15 
NI 

o, 0_< l < 15. (5) k 

The first fact about the bt,n, m coefficients can be 
determined simply from the choice that Tt,,(O, ~o) are 
real and Yt,_m(O, ~o) : (--1)rnyl*m(O , qg) [Jackson, 1975, 
equation (3.54)]. 

Fac t  1. F o r e a c h l = 0 , 1  . . . . .  n = 0  . . . . .  N t - 1  and 
m = " l  . . . . .  + l ,  

bl,n,m = (__ m , 1) bl,n,_ m. 

The second fact, based on the orthonormality of the 
YI,m(O,~o), relates t h e  orthonormality of the bt,,,.m 
coefficients to the orthonormality of the Tt,n(0, 9): 

Fac t  2. Tt,,,(O, ~o) (l = O, 1 . . . . .  n = 0 . . . . .  N t - 1) are 
orthonormal if and only if 

+l 

bl,n,mbl*n',m - -  ~n,n" 
rn=-I 

3. The fundamental bilinear equation for bl,n, m 

For our calculations, we choose the coordinate system 
used by Altmann (1957) and Laporte (1948) in which 
the z axis passes through two opposite vertices and the 
xz  plane includes one edge of the icosahedron. Let 
(0 o, ~o0) be the (arbitrary) spherical coordinates of a 
delta function within the first asymmetric unit. Let 
{(Ok, ~ok) " k = 1, 2 . . . . .  59] be spherical coordinates of 
delta functions in the remaining 59 asymmetric units 
generated by applying rotations in the icosahedral 
group. The locations of these additional 59 delta 
functions are given by fact 3: 

_ F a c t  3. As a function of the parameters 00 and ~o 0, the 
60 symmetry-related positions on the unit sphere are 

{(O k, ~0k)" k -- 0, 1 . . . . .  59} 

= {(00, ~0~,) • k = 0, 1 . . . . .  4} 

) {[Yn, c~n -t- k(2:r/5)] • k = 0, 1 . . . . .  4} 

U 1 [ ~ -  ×,,, rr - c~,, 

+ ~(2~r/5)]  • k = o, 1 . . . . .  4} / 
/ 

U { ( r r -  Oo, : r r -  ~ok) • k = 0 ,  1 . . . .  ,4} ,  
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where ~o k, Yk and % are related to 0 o and ¢Po by 

~Pk = gOo + k(2rr/5) 

cos ),~, = cos fl cos 0 o + sin fl sin 0 o cos got 

sin % = - ( s i n  0 o sin ~ok) / sin Yk, k = O, 1 . . . . .  4 

and 

fl -- arctan 2 

Explicitly, the icosahedral delta function of (2) is 

59 

~a(00, ~Oo; 0, ~o) = A E 8(cos 0 - cos  0k)8(~0 - ~ok), 
k=0 

where 8(x) is the Dirac 6 function and (0 k, ~o~) are given 
by fact 3. 

The relationship between A(00, CPo;0, cp) and the 
Tt, n(O, qg) is described by the following fact: 

Fact 4. The functions Tt,,,(O,~o ) ( l = 0 ,  1 . . . . .  
n - - 0  . . . . .  N t - 1 )  are a complete orthonormal fixed 
basis for the subspace of L2(O, ~o) that contains functions 
that are totally symmetric with respect to the rotations of 
the icosahedral group if and only if 

eo N~-I 

3(Oo, ~Oo; o, ~o) = E E ~l,.(oo, ~Oo)~/,.(o, ~o). 
l=-0 n=0 

The following fact is used in the simplification of the 
bilinear equation determining the bl,n, m coefficients. 

Fact 5. For any 00 and ¢Po, 

N I - 1 
bt,.,mTt,.(Oo, ~Oo) 

n=O 

±N12 l,rn {Pi m(COS 

+ (-- 1)l exp(--imtP0)] 
4 

+ ~ el,m(COS yk)[exp(im%) 
k--O 

+ ( - 1 )  t exp( - im%)]  }*, 

(7) 

m -- 5/z with/z E Z 

0, otherwise, 

Nt-1 +l 59 

E E bl,n,m'bl,n,mrl,m,(Oo, ~0) = 1 E Yl,m(Ok, ~k) 
n=O m' =-l k=O 

(8) 

for any l = 0, 1 . . . .  and m = -1  . . . .  , +l .  
Proof. Write ,4(00, ~0o; 0, ~0) in terms of both the fixed 

basis functions and spherical harmonics and equate the 
two expressions: 

o~ Nt-1 

E ~,,,(eo, ~Oo)r/,,,(o, ,p) 
I=0 n=O 

= a(0o,  ~o0; 0, ~o) 
59 oo +1 

_ _  1 . -- ~ ~ ~ ~ rl,m(Ok, ~ok)rl,m(O, ~01. 
k=O l=0 m=-I 

(9) 

Substitute (4) into (9) to obtain 

59 

E gl,m(Ok, ~k) 
k=O 

5Nt,z {Pt,m(COS Oo)[exp(im~oo) 

+ ( -  1) t exp(-imtP0)] 
4 

"4- ~ et,m(COS yk)[exp(im%) 
k=O 

+ ( -  1)' exp( - im%)]  }, 

m -- 5tx with/x E Z 

O, otherwise, 

where Z are integers. 
Fact 6 is the fundamental equation for determining the 

bt . . . .  coefficients: 
Fact 6. The bt,,, z (l = 0, 1 . . . .  ; n = 0 . . . . .  N I - 1; 

m = - l  . . . . .  + l )  coefficients satisfy each of the 
following equivalent relationships for arbitrary 0 o and 
tpo: 

N r l  59 

bl,n,mTl,n(Oo, ~°o) = -~ ~ gl*,m(Ok, ~Pk), ( 6 )  
n=O k=O 

OO Nl-1 +l 
E E E Tl,n(O0, ~°o)bl,n,mYl, m(. O, ~9) 
l=O n=O m=-l 

59 ~ +l 
1 

-- "~ ~ ~ ~ rl*,m(Ok, qgk)Yl, m(O , tp). ( 1 0 )  
k=01=0 m=-l 

Multiply (10) by Yl*m,(O, (tO), integrate over solid angles in 
0 and 99 (d~20,~o) and use the orthonormality of the 
spherical harmonics to obtain (after renaming the indices 
l' ~ l, m' --+ m) (6). Use fact 5 in (6) to obtain (7). Use 
(4) in (6) to obtain (8). 

The purpose of (8) is to demonstrate explicitly the 
bilinear nature of the equations. Notice, for example, 
from (8), that there is no coupling between different 
values of I. 

From (7), we immediately obtain the following 
properties of the bt,m,n, coefficients: 

Fact 7. (i) ff m # 5/z with/z  E Z then bl,n, m = O. 
(ii) For l even, bl,n, m is real. For l odd, bl,n, m is 

imaginary. 
(iii) bt,,,,m = bu, _m(-1)/+m. 
(iv) For l odd, bl,n, 0 "-- O. 
Using these properties, we can simplify the expression 

for the Tt,,(O, ~0): 
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Fact 8. 

+l  

~--~ [2/(1 + t~m,o)]Nl ,mbl ,n ,  m 
rn----0 

+l× el,re(COS O) COS m t p ,  I e v e n  
Tl,n(O, ~o) 

2Nt,mibt,,,,mPt,m(COS O) sin m~0, 
m = l  

I odd. 

Fix the value of 1. To this point, the only restriction on 
Tt,,,(O, ~o) for n = 0 . . . . .  N t - 1 that we have employed is 
that the functions must be orthonormal. We now add an 
additional restriction in terms of the bt,,,,m. Here, and 
throughout the remainder of the paper, let LxJ denote the 
integer part of x. 

Fact 9. The bt,n, m coefficients can be chosen so that 

tt,. = min{m ~ {0 . . . . .  l} • bl,.,m ¢ 0} 

satisfy 

tt. o < tt, ~ < . . .  < tt,u~_ l, (1 1) 

where the inequalities are strict. In a basis satisfying (11), 
it follows that bl ,n ,  m = 0 for m < 5n. 

Proof'. We need o n l y  consider m = 5/z for 
/x = 0 . . . . .  [l/5J by facts 1 and 3. Construct the matrix 

I bt,o,o bl,o,5 . . .  bl,o,[l/Sj5 ] 

I_bt,Nt-l,O bl,Nt-i,5 " " " bl,Nt-I,LI/5J5 d 

which is full rank (rank N t) because the bt,~, m are 
orthonormal (fact 2). Determine the transformation to an 
intermediate basis that satisfies (11) by applying 
Gaussian elimination. However, the intermediate basis 
need not be an orthonormal basis. Therefore, apply 
Gram-Schmidt orthogonalization, starting with the Nlth 
row, to transform to an orthonormal basis while still 
satisfying (11). The final claim (i.e. bt,n, m = 0  for 
m < 5n) follows from the strict inequalities and fact 1. 

We now modify the bl,,,,m notation slightly to 
incorporate results to this point. First, facts 3 and 8 
imply that the fixed basis functions are completely 
determined by the bl,n,  m coefficients for which m > 0. 
Therefore, t, new is only defined for m > 0 and, in the Ut, n, m D 
remainder of the paper, m > 0 and m' > 0 unless 
otherwise designated. Second, we absorb the i that 
occurs for l odd into the definition ,,~ hnew new v,. "l,n,m SO that bl,n, m is 
always real (fact 2). In summary, the new def'mition, for 
l = 0 , 1  . . . . .  n = 0  . . . . .  N t - 1  and m = 0 . . . . .  / , i s  

bnew . { bt,n, m, l even 
l,n,m --" ibt,n,m, l odd.  

For the remainder of this paper, we will use only the new 
notation and therefore will not include the superscript 
'new'. The/-odd case will not appear until fact 13. 

The remainder of the calculation of the bt,n, m 
coefficients is the same in plan but different in detail 
for I even versus I odd. We will show the/-even case and 
then state the results for l odd. First, specialize fact 6 
using facts 8 and 9 to find: 

Fact  10. For l even and m = 5 / z  with / z =  
0 , . . . ,  [l/5J, the bt,n, m coefficients satisfy the following 
relationship for arbitrary 0 o and ~Oo: 

l min(Nt-l,[rn/5J,[m'/5J) 
~ bl,n,m[2/(1 -b 8m,,o)]Nt,m, bl,n, m, 

m'=0 n---0 

× -PI,m,(COSOo)COSm'~o 

-- ±N [P -- 6 l,m /,m(COS 00) COS mtP0 

+ ~-~ Pt'm(C°S yk) c°s  m°tk] (12) 

4. Series expansions 

For each l, (12) represents a system of equations (indexed 
by  m) for the bl. '" coefficients, which must be satisfied 
for any choice of 0 0 and tp 0. We are not able to solve 
these systems directly. Therefore, we express the 
functional dependence on 0 0 and tp0 of both the right- 
and left-hand sides as infinite series and equate the 
coefficients of corresponding terms on the fight- and left- 
hand sides in order to derive new systems of equations. 
Possible choices include Fourier series and Taylor series 
and, especially for the Taylor series, possible variables 
include 0 0 and cos 0 0. Because of the dependence of Yk 
and ct k on 0 0 and ~o 0, the calculations are complicated and 
the choice we were able to pursue successfully was a 
Fourier series in ~o 0 [i.e. exp(ik~o0) ] and a Taylor series in 
0 o (i.e. ~o). In fact, we are not able to compute all of the 
coefficients in the Fourier-Taylor expansion but only the 
coefficients of terms like 0~0 exp(+imtP0 ). It turns out that 
equating corresponding coefficients of this type leads to 
systems of equations that can be solved recursively. The 
computation of these coefficients requires some appara- 
tus, which we now develop. Any alternative approach 
that computes the coefficients of the terms 
0~0 exp(+imtp0 ) will lead to the same results. 

Our approach, which we only sketch here, is based on 
two ideas: a particular function space, denoted by 7 9, and 
a particular operator, denoted by Q, on the function space 
79. We first describe 79. Le t fbe  a smooth function on the 
sphere. The Fourier-Taylor coefficients o f f  are 

1 I r k  ( ~ )  2'~ ]l  
din, k = ~ ~ f f (o, ~o)exp(-im~o) d~o 

0 0--0 

for m . . . .  , - 1 , 0 , + 1  . . . .  and k = 0 , 1 , . . ,  and the 
reconstructed function is 
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f(O, qg) = ~ ~ dm.kO k exp(img)). 
m=-oo k=0 

The function space 7" is a subspace of smooth functions 
on the sphere that is defined by the fact that din, k = 0 for 
0 < k < Iml. Therefore, f can alternatively be written 

oo 

f(O, q)) = Y~ ~_, dm,kO k exp(imq)). 
m=-oo k=lml 

The operator Q, applied to f ~ 7", is defined by 
+e¢ 

Q[f(O, ~o)] = ~'~ dm,l,,l# ml exp(im~0). 
m=-oo 

Applied to functions f e 7', the operator Q has a variety 
of properties of which the most important is that 
O[g(f)] = O[g(Q[f])], where g is any polynomial. We 
conjecture and use that the same formula applies when g 
is a smooth function. 

The operator Q is important because i f f  ~ 7" and you 
can explicitly compute the power series of Q[f], then you 
have explicit formulae for a certain subset of the Fourier- 
Taylor coefficients for f. We apply exactly this program 
to (12). First, we verify that the left-hand side of (12) is 
in 7'. Second, we apply Q to both sides in order to get a 
new equation where on both sides there is a series with 
terms of the type amOlo ml COS m%, where a m are coeffi- 
cients independent of 0 o and q)o. Third, we equate 
coefficients of 010 ml cos mq) 0 on left- and right-hand sides 
to arrive at an equation that is independent of 0 o and ~0 o 
and which, in terms of 

(--1)m(l + m)!/[2m(l - m)!m!], m >_ 0 
gt,m = 2m/[(_m)!], m < O, 

is described in the following fact: 
Fact 11. For l=O,  2 , 4 , . . .  and m = 5 / z  (0 <__ m < +l) ,  

I min(N t-l,[m/5j,[m'/5j) 

~ [2/(1 + 6m, o)1 
m r = 0  n = 0  

X bl,n,m, bl,n,mNl,m, gt,m,O~o' c o s  m'~0 o 

" - I N  { e~ 
-g t,m gt,mO~o COS m9o + ~ 0~o'5 cos m'90 

/xt=0 
m t = 5 / z  t 

x [21-~'/(1 + a0,m')] ~-~(1/k!)P}~)..( c°s/3) sink/3 
k=0 

L(m'-k)/2J ) } 
× E Cm,_k_2r,2r(_l r , 

r = 0  

where (k) Pt,, , ,(x)=dket,m(x)/da s and where the Cp,q 
coefficients are defined by 

cos(m sin-l{y/[1 - (cos/~ + x sin /3)211/2}) 
oo oo 

= ~.1 ~-~ Cp,qXPy q" 
p--O q=O 

For m' = 5/z' (0 _< m' _< +l) ,  equate the coefficient of 0'0~0 ' 
on both sides of fact 11 to get 

min(Ni-1, Lm/51, Lm'/5]) 
[2/(1 + ~m,,0)] 

n = 0  

X bl,n,m, bl,n.mNt,m, gl, m, c o s  m'9o 

= g t,m $m,m'gt,m COS mq) 0 

+ 5 cos m'qgo[21-m'/(1 + 30,m')] 
m t 

x y'~(1/k!)P}k~m(COS/~) sin k 
k=0 

L(m'-k)/2] ) } 
× ~ Cm,_k_2r,2r(__l r , 

r=O 

which must hold for I - - 0 , 2 , 4  . . . . .  m----5/z 
(0 < m < +l)  and m' ---- 5/z' (0 < m' < +l).  Division of 
both sides by [2/(1 + Sm,,o)]Nt,m,gt, m, COS m'tP0 results in 

Fact 12. For 1 even, m = 5 / z  ( 0 < m < + l )  and 
m' = 5/z' (0 _< m' < +l) ,  

min(Nt-I, [m/5], Lm'/5J) 

2 bl,n,m, bl,n,m = Cl,m,m, , (13) 
n : O  

where 

Ci,m, m, = [Xl,m/(12Nt,m,)] 

{8,.,m'( 1 + 6m',0) + [(5 x 21-m')/gl,m, ] × 

m p 

x ~(1/k!)Plkm)(COS ¢~) sin */~ 
k=0 

[(m'-k)/2] ) ) 
X ~ Cm,_k_2r,2r(__l r . 

~0 

The derivation of coefficients for the odd fixed basis 
functions is similar to that for the even functions. The 
final expression for determining the b~,.,m coefficients is 

Fact 13. For l odd, m = 5 / x  ( 0 < m < + l )  and 
m' = 5/x' (0 < m' < +1), 

min(N t -  1, [m/5], [m'/5]) 

bt,n,m' bt, n,m = Ct,m,m', ( 1 4 )  
n = 0  

where 

Cl,m, m, = [Nl,m/(12Nl,m,)]{~m, m, + [(5 x 21-m')/gl,m ,] 

rd 
x E(1/k!)n}~(cos ~) sin ~ 

k=0 

L(m'-k-1)/2J } 
X ~ Sm,_k_2r_l,2r+l(--1) r 

r-'-'-'-'-'-'-'-'-'=O 

and where the Sp,q coefficients are def'med by 
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- sin(m sin -l{y/[1 - (cos/3 + x sin 1~)211/2}) 
OO Oo 

--  ~ ~ Sp,qXPy q" 
p--O q--O 

Note that Ct,m, m, is defined differently for l even and l 
odd. 

5. Recursive solution 

Equations (13) and (14) enable us to obtain the bl,n, m 
coefficients sequentially in n for I even and odd, 
respectively. The symmetry of the left-hand sides of 
(13) and (14) in m' and m implies that Ct,m, m, = Ct,m, m 
and that we need only consider m > m' so (13) and (14) 
simplify to 

min(N t - 1, [m'/5J ) 

bl,n,m'bt,n,m : Cl,m,rn, 
n = 0  

0 < m' < l ,m '  < m < I. (15) 

We now describe an algorithm for solving (15). Based on 
fact 1, we are only concerned with m - - 5 #  and 
m ' =  5#'.  Fix the value of l. As observed following 
fact 6, there is no coupling between different values of l. 
Construct a n  N l × (LI/5] + 1) array of the bl,n, m 
coefficients where the ( i , j ) th  element is bl,i_l,5(]_l). 
Because of fact 9, this array has the form shown in Fig. 1. 
Equation (15) describes a sum over elements in one (if 
m = m') or two (if m 5~ m') columns. Suppose that the 
values of bl,n, m in rows n = 0 and n = 1 are known. 
Then, the values in row n -- 2 can be determined in two 
steps: First, set m = m' = 10, for which (15) becomes 

b 2 b 2 b 2 (16) /,0,10 + l,l,lO "~- /,2,10 = Ct,10,10" 

Since bt,o, lo and bt, l,xo are known, (16) can be solved for 

bt,2,,o: 

bl 2 10 : (C1,10,10 b2 b2 , , - -  1 ,0 ,10--  1,1,10) 1/2" 

Now that bt,2.1o is known, the remainder of the n = 2 row 
can be determined by evaluating (15) for m' = 10 and 
m = 15, 20, 25, 30. The key is that the upper limit of 
(15), which is determined by m', does not change as m 
moves across the row. Specifically, (15) becomes 

bl,o, lobl,o, m + bl, l,lobl,1, m + bl,2,10bl,2, m = Cl, iO,m (17) 

and bt,o, m, bl,o,m, bt, l, m, bt, l, m and bt,z, m are known so 
(17) can be solved for bt,2,m: 

bl,2,m = (Cl, lO,m - -  bt,o, l obt,o,m - bt,1, lobl, l,m)/bl,2,1o. 

,An algorithm of the type sketched in the previous 
paragraph will fail if bt,u,,5 u, = 0  for any /z' in 
0 . . . .  N t - 1. The simplest  example of this problem is 
l = 15 for which N15 = 1, C15,0,0 = 0 and C15,5,5 ¢ 0. 
However, the algorithm of the previous paragraph can be 
generalized to deal with this problem by taking 
advantage of fact 9. Specifically, if the algorithm 
determines that bt,n, m = 0 for m < tt, n then, for any 
r / >  0, it follows t h a t  bt,n+~, m - -  0 for m < tt, n + 5r 1. T h e  
resulting algorithm is shown in Fig. 2. Note two aspects 
of the algorithm of Fig. 2: First, when a new zero is 
found by the 'while '  statement, the diagonal containing 
that zero is immediately set to zero for rows beneath the 
current row (i.e. for n ' >  n). Second, because of the 
zeros, the upper limit on the summations y']n, 2 bl,n,,m, and 
~-]~n' bl,n',m'bt,n',m is n - 1 rather than min(N t - 1, Lm'/5J). 

In order to execute the algorithm of Fig. 2 in exact 
arithmetic, we have used the Mathemat i ca  symbolic 
computation system. The program for performing these 
calculations is listed in Appendix B.* The key fact is 
that Cl,m, m, c a n  be evaluated for arbitrary l, m and m' 
through elementary calculations. In order to evaluate 

(k) (k) 1/2 Pl,m(COSfl) = Pt,m(1/5 ), the following fact, proved by 
induction starting with equations 8.733-1,2 of 
Gradshteyn & Ryzhik (1980), is useful. 

Fac t  14. P}k~(x), where Ix[ < 1, can be expressed in the 
form 

(k) 
Pt,m(X) = Ak(x)Pt_,,m(X ) + B~(x)el.m(X), 

where Ak(x  ) and Bk(x)  satisfy the following recursive 
relations: 

Ak+,(x  ) = A'k(x ) q 
IxAk(x ) + (I + m)Bk(X ) 

1 m X 2 

B k + I (x) = B'k (X) -F 
lxB~(x) + (I - m)Ak(x  ) 

- 1  + x  2 

with the initialization Ao(x ) = O, Bo(x ) = 1. 

0 

0 • 
1 0 
2 0 

3 0 

4 0 

m 

5 I0 15 20 25 30 
• . g • • • 

• • * • g * 

0 * * * * * 

0 0 * * * * 

0 0 0 * * * 

Fig. 1. The bt,n, m array for fixed l. '0 '  indicates a guaranteed 0 element 
while ' . '  indicates a possibly nonzero element. 

6. Derivation of explicit forms of the icosahedral 
fixed basis functions 

To substantiate the derivations in the previous sections, 
in this section we derive explicit expressions for those 
fixed basis functions that can be determined from (15) for 
m' = 0 (the so-called 'first set') or m' -" 5 (the so-called 
'second set'). (Recall that m > m' always). Notice that 

* Appendix B has been deposited with the IUCr (Reference: JS0012). 
Copies may be obtained through The Managing Editor, International 
Union of  Crystallography, 5 Abbey Square, Chester CH1 2HU, 
England. 
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the first and second sets do not correspond to n = 0 and 
n = 1. For instance, N15 = 1 so there is only an n = 0 
fixed basis function for I = 15 but, because bls,0,o = 0, it 
is necessary to consider m' = 5 in (15) so the single fixed 
basis function belongs to the second set. 

In Appendix A, we list the coefficients for all fixed 
basis functions in the range 0 < 1 < 45. Though our 
theory and Mathematica software can compute the 
coefficients exactly, we only tabulate results to 16 
decimal digits of  precision in order to save space. Please 
contact PCD for machine-readable tables of  coefficients 
and software. 

6.1. The f irst  set o f  icosahedral f ixed basis funct ions 

The first set of  icosahedral fixed basis functions is 
the collection of  Tt..(O, rp) for which bt,., o # 0 .  
Specifically, the first set is those fixed basis functions 

~-~n'--O bl,n'm'X that are computed by the bl,n, m =(Cl,m,,m-- n-I 
bl,n,m)/bt,n, m, statement in the algorithm of Fig. 2 with 
n --  m' = 0. From fact 4, we know that bt,., 0 = 0 for 1 
odd. Therefore, there are n o / - o d d  fixed basis functions 
in the first set. 

Set m' = 0 in (13 )  to get 

bt,o,obt,o, m = [Nt,m/(12Nl,o)][28m, 0 + (lO/gl,o) 

x el,re(COS fl)c0,0]. 

for(n = 0; n < Nt; n + +){ 

for(m = 0; m < 5n; m+ = 5){ 

bt.n. m = 0 
) 

) 

m' = 0  

for(n = 0; n < Nt; n + +){ 

while((bt.,..,,,, = (C,.m, m' -- ~_,",,,-_-~ b~.,,,.m,)./z) = =  0){ 

for(n' = n + 1,m = m' + 5 ;  n' < Nt; n' + + , m +  = 5){ 

bt.n,.m -- 0 
} 

m'+ = 5 
} 

for(m = m' + 5; m < = l; m+ = 5){ 

b, .. . .  = (Cl.trd.m -- E : ' %  bl.n'.ngbl,nr.m)/bl.n.rff 

} 

m'+ = 5 

} 
Fig. 2. An algorithm for the solution of equation (15) in the general 

case. The control structures are written in the C programming 
language. 

Noting gt,o = 1, Co, 0 = 1, we obtain 

bt,o,obt,o, m = ~ [(l - m)!/( l  + m)!]l/218m,O 4- 5Pl,m(1/51/2)]. 

(18) 
Evaluate (18) at m = 0 to get 

b 2 t.o,0 = ~[1 + 5P1.o(1/51/2)]. (19) 

Evaluation of  (19) shows that bt,o, o = 0  for 
l = 2, 4, 8, 14. Therefore, fixed basis functions of  order 
1 --  2, 4, 8, 14, if they exist, are not members  of  the first 
set and, in fact, (5) shows that they do not exist at all. 
[We have verified that fixed basis functions of  order 
1 --  2, 4, 8, 14 do not exist in the first or second set but in 
order to demonstrate that a fixed basis function of  order 1 
does not exist at all it is necessary to check through the 
(l + 1)th set]. The first four unnormalized /-even fixed 
basis functions, obtained by exact numerical calculations 
from (18), are 

T0 .O,  ~o) = 1 

T6,0(O, ~0) "- 3960P6,0(cos O) - e6,5(cos/9) cos 5tp 

Tlo,o(O, rp) = 896 313 600Pl0,0(COS 0) 

+ 27 360P10,5(COS 0) COS 5tp 

+ PIo,10(COS 0) COS 10tp 

Ti2,0(0, rp) = 14 250 297 600Pl2,0(COS 0) 

-- 55 440P12,s(COS 0) COS 5tp 

+ PI2,10(COS 0) COS 10tp. 

[Division of  the stated formula by (4rr) ~/2, 3600 × 
1/2 1/2 (117r/13) , 25 920 000(1729~)  , or 3 9 9 1 6 8 0 0 0 x  

(5957r) 1/2 will normalize To. o, T6,o, Tio.o or T12,o, 
respectively.] In Fig. 3, we show a spherical plot of  
Tin. o which clearly exhibits the icosahedral symmetry of  

T10,0. 

6.2. The second set o f  icosahedral f ixed basis functions 

The second set of  icosahedral fixed basis functions is 
the collection of  Tt,.(O, tp) for which bl,., o = 0 and 
bt,., 5 ~ O. Specifically, the second set is those fixed basis 

Fig. 3. The icosahedral fixed basis function T~o,0. The stereopair of 
plots shows a surface whose distance from the origin at particular 
0 and tp values is the value of Clo.o + Tio.o(0, ~o), where Clo,o = 
2 max0,~[lTio,o(0, ~o)1]. 
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functions that are computed by the bl,n, m = (Ct,m,,m- 
n-1 y'~,,,=obt,,,,m, bt,,~,r,,)/bt,,,,m , statement in the algorithm of  

Fig. 2 with n = 0, 1 and m' = 5. We now determine the 
bl,n, m coefficients. First consider the /-even fixed basis 
functions. Setting m' = 5 in (13), we obtain 

bl,o, sbt,o,m + bt, l,sbt, 1,rn 

-- [Nl,m/(12Ni,5)]{ 81mh5gl,m/gl,5 "}- [5/(16gt,5) ] 

5 
x y"~(1/kt)P}k~(1/51/2)(2/51/2) k 

k-----O 

t(5-k)/2] } 
× ~ C5_k_2r,2r(--ll r (20) 

r=0 

where, by applying (18) three times to achieve the second 
equality, 

2 
bl,o,sbl,o,m = (bl,o,obt,o,5)(bl,o,obl,o,m) /bl,o,o 

= [(1 - 5)!(I - m)! / ( l  + 5)!(l + m)!] 1/2 

x ([25Pl,m(1/51/Z)el,5(1/51/2)] 

× {611 + 5Pt,o(1/51/2)]}-1). (21) 

Using (21) in (20), we worked out the expression for the 
/-even second-set fixed basis functions with the aid of 
Mathemat ica  and this is 

bt, l,sbt, l,,,, = ~ [ ( l  - m)!(l + 5)!/( l  + m)!(l - 5)!] 1/2 

× (8m,5 - [ ( l -  5)!/(l  + 5)!1 
x {255!Ul,m + [50PI,m(1/5U2)Pt,5(1/51/2)] 

x [1 + 5Pt,o(1/51/2)1-1}), (22) 

where 

Ul,,, , = (1 

+ 

+ 

+ 

+ 

+ 

/768)[(120 - 56l - 195l 2 - 513 + 15l 4 + l 5 

925m 2 + 951m 2 - 19512m 2 _ 1513m 2 + 275m 4 

251mn)pt,m(1/51/2) + 51 /2 ( ' 120  - 881 + 63I 2 

29l 3 - 3l 4 - 15 + 120m - 321m - 3112m 

213m + lam _ 275m 2 - 2601m 2 + 3012m 2 

1513m 2 + 275m 3 - 151m 3 - 1512m 3 _ 25m 4. 

25lm 4 + 25mS)Pt+l,m(1/51/2)]. 

Evaluate (22) at m = 5 to get an expression for b 2 1,1,5" 
Evaluation of  this expression using exact arithmetic 
shows that the smallest even l such that bt,1, 5 5~ 0 is 
l = 30, i.e. the lowest-order second-set /-even fixed 
basis function is T3o ,1(0, tp). By further calculations with 
Mathemat ica ,  we find that an unnormalized expression 
for T3o,1 is 

T3o.~ (0, ~o) 

= 21 575 737 826 844 783 682 237 777 575 936 000 000 

× P3o.~(cos 0) cos 5~o 

+ 2 404 901042 680 144 820 126 515 200 000 

× P3o,10(COS 0) COS 10~0 

+ 195 936 300 573 276 856 320 000 

× P3O,15(COS 0) COS 15~0 

+ 7 601 550 560 755 200P3o,2o(COS 0) COS 20~0 

+ (7 075 752 000/11)P3o,25 (COS 0) COS 25q9 

+ 12251P30.3o(COS 0) cos 30~0. 

[Division of the stated formula by 
11 587 425 684 543 700 992 000 000 000 000 
( 2 8 0 7 2 7 7 6 4 2 7 7 6 6 0 6 4 3 1 9  187 390671rr /61)  1/2 will 
normalize T3o,1.] For comparison, an unnormalized 
expression for T3o,o(0, ~o), a member  of  the first set, is 

T30,0(0, ~0) 

= 813 279 038 255 889 216 053 348 786 362 122 240 000 000 

X P30,0(COS 0) 

- 47 353 003 689 115 160 214 196 322 304 000 000 

X P30.5(cos 0) cos 5tp 

+ 1 645 439 737 221 580 537 036 800 000 

× e3o.10(cos 0) cos 10~0 

- 55 708 614 976 734 720 000P3o ' 15 (cos 0) cos 15¢p 

-t- 9 702 264 499 200P30.2o(COS 0) cos 20tp 

- 5 407 920P30,25(cos 0) cos 25~0 

+ e3o.30(cos 0) cos 30¢p. 

[Division of  the stated formula by 
41 445 759 345 654 852911 923 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
(9 198 155 739zr/61) 1/2 will normalize T30.0.] 

Now let us consider the second-se t / -odd fixed basis 
functions. By setting m' -- 5 and noting that bt,,,,m - 0 
for n ' = l  . . . . .  N t - 1  and m = 1 0 , 1 5  . . . . .  [ l /515 in 
(14), we get 

bt,o,sbt,o,m = ~ [ ( l  - m)!(l + 5)!/(1 + m)!(l - 5)!] I/z 

× {8m,5 - 3 8 4 0 [ ( l -  5)! /( l  + 5)!]Vt,m}, (23) 

where 

Vl,m = (5 X 51/2m/768)[51/2(1 + m)(26 -- 3l -- 312 

+ lOm2)Pl_l,m(1/51/2) + (24 -- 50l -- 2012 -b, 5l 3 

+ l 4 + 5 5 m  2 -- 151m 2 _ 512m 2 + 5m 4) 

x el,re(l/51~2)]. 

As before, by setting m = 5 in (23), we derive an 
expression for b 2 The smallest odd l for which this /,0,5" 
expression is nonzero is l = 15. Therefore, the lowest- 
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order/-odd second-set fixed basis function is T15,0(0, ~0), 
which has the unnormalized expression 

T15,o(0, ~o) : - 36 306 144 000P15,5(cos 0) sin 5~o 

-- 62 640P15 ' lo(COS 0) sin 10~p 

+ Pls,~5(cos 0) sin 15~0. 

[Division of the stated formula by 3919104000000  
(215656441zr/31) 1/2 will normalize T15,o.] Tls,O is, by 
(5), the lowest-order/-odd fixed basis function among 
any set. 

6.3. Symbolic verification of the icosahedral fixed basis 
functions 

As described in ~4, we use Q[g(f)] = Q[g(Q[f])] for 
smooth g but can only prove it for polynominal g. 
Therefore, we have verified explicit instances of our 
calculation in two ways: First, our exact results 
reproduce the 6-significant-digit results for 0 < l < 30 
in Jack & Harrison (1975). [For l =  30, Jack & 
Harrison (1975) list only one fixed basis function, 
which is our T30,0, in spite of the fact that N3o = 2.] 
Second, for l < 45, we have verified that each Tt,,(O, ~o) 
is totally symmetric through symbolic calculations with 
Mathematica (Zheng & Doerschuk, 1995). 

7. Other polyhedral symmetries 

Using the same idea and techniques that have been 
applied in previous sections to the icosahedral symme- 
try, we can derive complete orthonormal fixed bases for 
the subspaces of functions in L2(O, qg) that are totally 
symmetric under octahedral or tetrahedral symmetries. 
Since the cube is dual to the octahedron and the 
dodecahedron is dual to the icosahedron, it is not 
necessary to consider the cubic or dodecahedral 
symmetries separately. Below, we only outline the 
calculations and have suppressed the details. Please 
contact PCD for machine-readable tables of coefficients 
and software. 

7.1. Octahedral/cubic symmetries 

This case has been previously studied by Von der 
Lage & Bethe (1947) under the name Kubic harmonics 
for l < 6 and for all representations rather than just the 
identity representation. Choose appropriate coordinates 
such that the spherical coordinates of the vertices of the 
underlying octahedron are 

. . 3.), (zr, o)].  {(0, 0), (~, o), (~, 9 ,  (-"~, zr), (~ , 

Express the octahedrally symmetric delta function in 
terms of both spherical harmonics and the unknown 
octahedral fixed basis functions. After simplification, 
this gives: 

for l even, 

E E bl,n,m[2/(1-Jl-~rn',o)]Nl,m'bl,n,m, 
m'>O 4n<m' 

x et,z,(COSOo)cosm'~oo 

= 3 t,m t,,,,(COS 0 o) COS m~o o 

+½;-~Pl,m(COSy1:)cosrna1:], m = 4/z; 
k=0 3 

for I odd, 

~ bt,n,mNt,m, bt,n,z, et,m,(COSOo)cosm'~oo 
m'>0 4n<m' 

r 
1N IPt re(COS 00) sin = ~ l,m , mqgo 

I .  

+ ½ ~ PI,m(COS y1:) sin mu1: , m = 4ix; 
I:=0 

where a1:, Yk have the same definitions as in the 
icosahedral case with fl = ~ /2  and ~Ok- ~oo +k~r/2. 
Using the series-expansion techniques, we obtain 
expressions for determining the coefficients bt,,,,m: 

for I even, 

E bl,n,m, bl,n,m 
4n<m' 

for I odd, 

= [Nt,m/(6Nl,m,)][Sm,m,(1 -b 8m,,O ) 

m ! 

v (k) -4- (22-m'/gl,m ,) ~-~(1/k.)Pl,m(O ) 
k---O 

[(m'-k)/2J ] 
X E Cm,_k_2r,2r(--1)r ; 

r=O 

bt,n,m'bt,n,m = [Nl,m/(6Nl,m,)] [~m,ra' -4- (22-m'/gl,m,) 
4n<_m' 

m t 

x ~-]~(1/k!)P}k)m(O) 
k=0 
[(m'-k-O/zJ ) ] 

X E Sm,_k_2r_l,2r+l(__l r . 
r--O 

where Cp,q and Sp,q are defined by 

~ Cp,dPyq "- Cos{m arcsin[y/(1 - x 2 ) 1 / 2 1 1  
p=0 q=0 
oo 0(2 

~ Sp,qXPy q : -- s in{m a r c s i n [ y / ( 1  - x2)I/2]}. 
p-------0 q----0 

7.2. Tetrahedral symmetry 

The spherical coordinates of the vertices of the 
underlying tetrahedron are 



YIBIN ZHENG AND PETER C. DOERSCHUK 231 

{(0, 0), (/3, 0), (/3, 2zr/3), (/3, 4zr/3)}, 

where /3 = J r -  arccos½. Because the vertices of the 
tetrahedron do not have spatial reflection ( x - - + - x )  
symmetries, the coefficients bt,n, m for the tetrahedral case 
may be complex. It is more convenient to introduce the 
dual tetrahedron, which has vertex coordinates that are 
spatial reflections of those of the primal tetrahedron, 
specifically, 

{(zr, 0), (zr - /3 ,  zr), (zr - / 3 ,  5zr/3), (/3, zr/3)}, 

so that the coefficients bt,,,.m can be chosen real (or 
pure imaginary) as in the icosahedral case. Let 
A(P)(0o, 90; 0, g)) be the delta function associated with 
the primal tetrahedron and let A('0(0o, ~Oo; 0, ~o) be the 
delta function associated with the dual tetrahedron. 
Further, let 

za(+)(Oo, ~Oo; o, ~o) = za~)(Oo, ~Oo; o, ~o) + A(d)(0o, ~Oo; 0, ~o) 

z~(-)(0o, ~Oo; o, ~o) = za~°)(Oo, ~Oo; o, ~o) - za(d)(Oo, ~Oo; 0, ~o). 

Instead of expanding A(P)(0o, ~Oo; 0, q)), we expand 
A(±)(Oo, ~Oo; 0, ~0) in terms of both spherical harmonics 
and the unknown tetrahedral fixed basis functions. This 
will give us two independent sets of tetrahedral fixed 
basis functions. The master equations for determining the 
coefficients are: 

for 1 even, 

(+) 
E E b};),m[2/( 1 "-1- (~m',o)]Nl,m'bl,n,m ' 

m'>0 3n<rn ~ 

X el,mt(COS 00) COS m'~o o 

IN[, = ~ t,m tan(cos 0o) cos mq9 o 

+ ~_. PI,m(COSyk)cosmotk 
k---O 

E ~ bl~n),m[2/(1-bSm',O)] 
m'>_0 3n<m' 

X Nt,m,b}'fn),m, Pl,m,(COSOo)sinm'q)o 

- - I N  [P - -  "4 l,m I,m(COS 00) sin m~o o 

+ ~ Pt,m(COS ?'k) sin ma t , 
k=O 

m = 3/z; 

for 1 odd, 

b ,b P cos 0 sin E E ~+~ ~+~ t,,,,mNt,m t,.,m' t,m'( o) m'~°o 
m'_>0 3n<m' 

= ~ l,m t,m(COS 00) sin rnq) o 

+ ~ Pl,m(COS Yk) sin mak 
k---~ 

~ (-) (-) 
bt,n,mNt,m, bt,,,,m,Pt, m, (cos 0o) cos m'q) o 

rn'>_O 3n<m' 

F 
I N [Pt,r,,(cos 0o) cos m~Oo = "~ l,m 

t. 
2 

+ ~ P t , m (  c ° s y k ) c ° s m a  t , m = 3 / z ;  
k=0 

where ot k, yt are defined as before [with the new value of 
/3 and q)k = q)o + k(2zr/3)]. The final expressions for 
determining bt,n, m coefficients are: 

for l even, 

~.(+) b(+) UI,n,m' l,n,m 
3n<m' 

= [gl ,m/(8Nl ,m,)]{~m,m'(1 "[- (~m',O) 

m' k 
-[-[(3 X 21-m' )/gl,m, ] ~ (1/k!)e} O (cos /3) sin* /3 

k=0 
t(m'-k)/2J ) } 

× ~ Crn,_k_2r,2r(__ 1 r 
r--O 

h(-) h(-) U l,n,m' '-" l,n,m 
3n<m t 

= [Nt,rn/(8Nl,m,)l{•m,m,(1 --k Srn, O) -t-[(3 × 21-m')/gl,m, ] 

Ill t 
I (k) x ~'](1/k.)Pl,m(COS/3) sin k/3 

k=0 
[(m'-k-1)/2J } 

X E Sm'-k-2r- l ,2r+l( - -1)  r " ,j 
r=O 

for l odd, 

h (+) h(+) " l,n,mt" l,n,m 
3n<m' 

- -  [Nl ,m/ (SNl ,m ' ) ] (  ~m,m' + [(3 X 21-m') /gl ,m ,1 

i..i.1 t 
x ~(1/k!)P}~)(cos/3) sin*/3 

k=0 
L(m'-k- 1)/2J ) } 

X ~ Smt_k_2r_l,2r+l(__l r 
r=0 

h(-) h(-) " l,n,ng"'l,n,m 
3n<_m' 

= [Nl,m/(8Nl,m,)l{Sm,m,[(3 × 21-m')/gl,m ,] 

m t 
x y'](1/k!)P}k)(cos/3) sin k t3 

k=0 
L(m~-k)/2J ) } 

y ~  Cm,_k_2r,2r(__ l r ," 
r=O 
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where Cp,q_ and Sp,q a r e  defined as in the icosahedral case 
with the new value of ft. 

8. Application to other representations of the 
icosahedral group and other rotational groups 

The idea of applying the projection operator to the delta 
function can be applied to other (i.e. higher-dimensional) 
representations of the icosahedral group, as well as to 
other finite groups of coordinate rotations. 

Let g be the order of the finite group G of coordinate 
rotations, N be the number of irreducible representations 
and dp, for p = 0 . . . . .  N - 1, be the dimension of the pth 
irreducible representation. For the icosahedral group, 
these values are g = 60, N = 5 and dp = 1, 3, 3, 4, 5 
(Artin, 1991, p. 324). Let FP(Tk)j.j, forp  = 0 . . . . .  N - 1, 
k = O . . . . .  g - 1  and j , f  - -1  . . . . .  dp be the matrix 
elements of the kth member of the group in the pth 
unitary irreducible representation. For the icosahedral 
group, these matrices are known (Liu, Ping & Chen, 
1990). 

By applying two theorems and a definition in 
Cornwell (1984) to L2(0, qg), we have the following two 
theorems and definition: 

Theorem 3 (Cornwell, 1984, p. 92, Theorem I). Any 
function f(O, ~o) ~ L2(8, qg) can be expressed as a linear 
combination of basis functions of the unitary irreducible 
representations of a group ~ of coordinate rotations in 
7¢ ~. That is, 

N - I  dp-1 

P fP(o, qg), (24) f(O, ~o) = ~ ~ a t 
p --O j =o 

wheref,P. (0, ~o) is a normalized basis function transform- 
ing as the jth row of the dp-dimensional unitary 

p irreducible representation 1 'p of ~, the aj are a set of 
complex numbers and the sum of p is over all the 
inequivalent unitary irreducible representations of G. 

Definition 1 (Cornwell, 1984, p. 93). Projection 
operators: Le t / 'P  be a unitary irreducible representation 
of dimension d o of a finite group of coordinate 
transformations ~ of order g. Then, the projection 
operators are defined by 

r (r)j,zP(r). 
Te~ 

Theorem 4 (Cornwell, 1984, p. 93, Theorem II). For any 
function f (0 ,  tp) ~ L2(O, tp), 

"PPjf(O, ~o) P p , = a j f j ( O ,  tp), 

P and fP(O, tp) are the coefficients and basis where aj 
functions of the expression of f (8 ,  ¢p) [(24)] that relate to 
the jth row of F p. 

We apply these results to 8(cos 0 - cos 00)8(t p - ~o0) to 
find that 

8(cos 8 - cos 80)8(~o - ~o0) 
N - l  dp-I 

aj A~(80, ¢P0; 0, tp) 
p---0 j=0 

P P aj A~ (8o, 9o; O, tP) 

=  ' jS(cos 8 - c o s  80)8( o -  00) 
g 

(dp/g) ~ 'p * = F (Tk)~,jP(Tk)8(cosO - cos 80)8(q9 - ¢Po) 
k=:  

g 

(dplg) ~ 'p * -- - -  
= r(T ) ,jS(cos8 cos8 )8(  

k=l 

(25) 

where (8 k, ¢p~) are me symmetry-related positions, e.g. for 
the icosahedral group (8/,, ¢Pk) are given by fact 3. 

The symmetrized delta functions Zl~(8o, ¢Po; 0, ~o) 
define subspaces, denoted by (L~)2(0, ¢p), of the Hilbert 
space L2(0, ~o) by 

= {f(O, ~o) ~ L2(O, ~o) :f(O, ~o) ~o) 

= f A~(80, ~00; O, ~o)f(8 o, ¢po) d$20 }. 

Each subspace contains only a certain type of basis 
function, the union of the subspaces is all of L2(0; ¢p), and 
the only function in the intersection of any pair of the 
subspaces is the zero function. 

The goal is to determine a complete orthonormal fixed 
basis in each subspace. Denote the fixed basis functions 
by T7(0, ¢p; c 0, where ct is an index. We proceed exactly 
as in the previous sections of the paper devoted to the 
identity representation of the icosahedral group. First, 
one can show that ct can be written as 1, n and 

+l 

TP(O,~o; l ,n)  = ~ ~(l ,n,m)Yt.m(O, tP). 
m=--l ' 

Second, one can expand Af(O0, tp0; 0, tp) as a weighted 
sum of Yt,m(O, ~o) by using (25): 

oo +l 
= E  E P wj (8o, ~Po; l,m)Yi,m(O, tp) 

l----0 ra=--I 
P w/(O 0, ~o0; 1, m) = f p A j  (80, qgO; 8, (p)Yl*m(8, qg) d l 2  

g 
= f (dp/ga~)  ~ FP(TD~8(cosO 

k=1 

- cos 8k)8(~o - ~ok)Yt*m(O, ~o) d O  
g 

= (dp/ga p) ~ rP(TD;,y,Tm(Sk, ~o~). 
k=l 

(26) 

Third, since TT(O,~p; l, n) are a complete orthonormal 
fixed basis for (L~)~(8, ~o), it follows that 
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AP(Oo, ~Oo; O, ~o) = 2 ~ [72(00, ~°o; l, n)I*TjP(Ù, (p; l, n). 
l----O n---O 

(27) 

Fourth, by equating the expansions for AP(00, ~o0; 0, ~o) 
provided by (26) and (27), one arrives at an equation that 
is exactly a generalization of (9) in fact 6. From this point 
forward, the Tf(O, ~0; l, n) can be obtained by using the 
same methods already used for the identity representation 
of the icosahedral group. 

We would like to thank Professor John E. Johnson 
(Department of Biological Sciences, Purdue University) 
for drawing our attention to this problem and for his 
enthusiastic interest in the results. We would also like 
to thank two anonymous reviewers for pointing out the 
Cornwell and Bethe references and for helping us relate 
our calculations to more traditional approaches. 

Note added in proof'. We have simplified the 
calculations of ~4 so that Q is unnecessary. Equation 
(12) can be written 

l 
el,m,m, hl,m, el,m,(COS 00) COS m'~0 o = f/,m(00, qg0) , 

m'=0 

where fl,m(OO, qgO) is the fight-hand side of (12), 
ht,m, : 2Nl ,m' / (1 -at- ~m',O) and the definition of el,re, m, c a n  
be inferred from (12). Multiplication by cos m"tp0, 
integration of (P0 from 0 to 2rr and renaming m" as m' 
leads to 

27f 
el,m,m, hl,m, Pt,m,(COS Oo):rr : f fl,m(Oo, ~00) cos m'tP0 d~o 0. 

0 

(28) 

Differentiation m' times with respect to 0 o, evaluation of 
the resulting equation at 0 o = 0 and use of 
[om' Pl,m'(C°SOo)/O0~o']oo=o : gl,m', where gt,m' is defined 
in ~,4 leads to the result that 

2rr 
el,m,m'hl,m ' gt,m' Y r :  f [0 m'f/,m (00, qg0)/00~0n0 ']0o___0 COS m t ~00 dq90 . 

0 

(29) 

While the right-hand side of (28) is very complicated, the 
fight-hand side of (29) can be evaluated explicitly. In 
fact, (29) divided by hl,m,gl,m, Tr is (13). The reason that 
this simplification can be achieved is that ft,r, lies in a 
subspace of 79: 

fl,m(O0, qgO) E span{Yt,m,(O o, ¢Po), m' = --1 . . . . .  +l} C 79. 

APPENDIX A 
Tables of icosahedral fixed basis functions 

Table 1. Table o f  bl,n, m coefficients f o r  Tt,,,(O, ~o) for  n = 0 and I ~ {0, 1 . . . . .  44} 

m = O  
5 

10 

m = O  
5 

10 
15 

m = O  
5 

10 
15 
20 

m = O  
5 

10 
15 
20 
25 

/ = 0  
2.820947917738781 x 10 -1 

l = 1 2  
8.257237892937810 x 10 - I  

-3.21243304269289 x l 0  -6 

5.794431895189197 x 10 -11 

I : 18 
9.002655639988 x 10 - I  

-4.983700158317558 x 10 - r  
2.95803665617139 × 10 -13 

-1.333890988533275 x 10 -xs 

l = 2 2  
9.37575294971949 x I0 - l  

1.384569813591985 x i0 -T 

-5.112584978701351 x 10 -14 

2.516822842735015 × 10 -20 

4.848248656832747 x 10 -26 

6.746726148605862 × 10 - I  

i0 

4.691941147166168 × 10 - I  

-1.703718724395419 x 10 -4 1.43221646738894 x 10 -s 
5.23470931063209 x 10 - l°  

15 

-1.981609297252692 x 10 -6 

-3.418925633631284 x 10 -12 

5.458054970675743 x 10 -17 

20 
1.974780890363718 x lO -x 
3.407144393312143 x 10 -7 

2.227863454007644 x 10 -13 
6.341985647126132 x 10 -20 

1.15898860510346 × 10 -24 

24 

9.21002314556901 x l0 - I  

16 

7.266060945668594 × 10 - I  

9.4847286780344 x l0 -7 

-1.84241038811857 × I0 -a2 

-1.-17921811835546 × I0 -17 

21 

4.092807665027534 × 10 -7 

-3.010993744539446 x 10 -14 

-6.788856747248027 x 10 -2o 

1.769037092778827 × I0 -2s 

25 

-1.421035598340473 x I0 -T -7.836655445742523 × I0 -s 

1.41618895252736 x I0 -14 -2.212844336129518 x i0 -14 

-3.592455208180777 x 10 -2a 
5.399914634711366 x 10 -27 

-3.108175909252568 × 10 -21 
-2.351130649241877 x 10 -2~ 
6.664202520526863 x 10 -33 
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T a b l e  1 (cont.) 

1 = 26 27 28 

m = O !  3 . 8 6 0 0 4 7 7 7 3 4 7 3 4 3 9 x  i0  -1 

5 1 .172309989757126  x 1 0 - '  

10 7.210763030113126 x 10 -15 

15 - 1 . 8 4 1 0 0 9 1 7 8 2 0 1 9 4 8  X 10 -21 

20 -3.081476412319671 × I0 -25 

25 i -9.61759179875053 x.lO -34 

/ = 3 0  

-1.212289006689981 x 1 0 - '  

5 . 001166305854851  x 10 - i s  

6 . 8 1 1 1 5 7 9 7 8 0 0 2 9 8  × 10 -23  

-2.439701260119987 × i0-? s 

1 .77966069978407  x 10 -34  

31 

1 .109757377696939  

2.466285348255486 × I0 -s 

- 3 . 7 9 6 7 8 5 1 8 8 1 7 8 5 0 2  × 10 -15 

3 .831523631119293  × 10 -22 
- 7 . 2 5 3 0 4 7 0 2 0 2 7 6 4 0 2  × 10 -29 

- 5 . 5 3 4 9 8 7 0 4 2 3 3 5 4 7  × 10 -35  

32 

m = O  

5 

10 

15 

20 

25 

30 

m = O  
5 

10 

15 

20 

25 

30 

35 

m = O  

5 

10 

15 

20 

25 

30 

35 

m - O  

5 

I0 

15 

20 

25 

30 

35 

40 

rn=O 

5 

10 

15 

20 

25 

30 

35 

40 

9.01569227139824 x I0 -I 

-5.249368166465911 × 10 - s  

1 .824069922388993  × 10 -15 

- 6 . 1 7 5 6 3 8 4 4 4 7 4 7 6 6 1  × 10 -23 

1 .075554968785223  × 10 -29 

- 5 . 9 9 5 0 0 7 8 9 4 5 7 2 0 1 9  x 10 - 3 6  

1 .108560758031187  x I0 -42 

l = 3 3  

4.486285313525142 x 10 - s  

- 8 . 5 2 2 8 5 8 5 2 3 1 9 9 6 7  × 10 -16 

1 .008085340956216  x 10 -23 

5 .272366428771854  x 10 -31 

- 2 . 4 9 9 2 6 4 8 4 0 3 2 7 3 9 8  x 10 -37 

6 .70116055428839  x 10 -44 

I = 36 

8 .56692849713775  x 10 -1 

- 2 . 1 5 2 5 3 3 9 1 3 5 2 0 9 1 3  x 10 - s  

3 .804515951584917  x 10 - 1 6  

- 3 . 7 4 9 4 8 4 4 5 0 2 0 2 8 2 2  x i0  -24 

6 .58716976948225  x 10 -32  

- 1 . 0 8 0 8 0 7 1 6 6 6 6 1 6 0 1  x 10 -38 

2 .345992971190676  × I0 -45 

-2.867106842446356 x I0 -52 

I = 39 

- 1 . 9 2 1 4 7 2 6 3 7 7 2 9 3 4 3  × I0 - s  

1 .844404284013966  x 10 -16 

- 1 . 2 8 2 8 2 6 1 9 7 5 8 4 0 4 2  x 10 -24 

3 .242397542911047  x 10 -33  

5 .469150678188241  x 10 -4o 

- 9 . 4 1 5 5 6 0 9 4 5 7 3 5 9 9  × 10 -47 

1 .100216050831976  x 10 -53  

1 = 4 2  

8 .06071321824356  x 10 -1 

- 8 . 6 3 7 6 0 9 9 5 5 6 6 0 3 8  x 10 - 9  

1 .017062390750238  x I0 - I6  

- 4 . 8 1 0 3 9 5 8 3 1 9 6 7 0 4 1  x i0  -25 

9.94869187201453 x 10 -34 

- 2 . 1 6 1 7 6 3 1 1 6 6 1 5 6 5 6  x 10 -41 

4 .327504389994189  × 10 -48 

- 3 . 7 4 8 2 6 4 4 2 8 6 4 0 9 7 3  × 10 -55 

3 .419400195443956  x I0 -62 

4 . 0 6 6 4 2 3 2 2 7 2 5 7 5 4 3  x I0 -8 

2.147891855582007 x I0 -Is 

- 4 . 2 6 0 9 8 2 3 1 6 7 7 8 0 8 4  x i 0  -23  

- 9 . 0 5 2 4 8 1 2 8 8 8 9 9 1 2  × 10 -30  

- 3 . 9 7 4 7 8 8 0 8 5 0 2 4 6 4 5  x 10 -37  

1.810012789173336 x I0 -42 

34 

1 .242957162616307  

2 . 3 8 0 2 7 8 3 8 0 7 9 4 4 7 9  x 10 -9 

- 4 . 7 2 5 4 9 5 3 0 4 7 8 9 3 4 9  x 10 -16 

1 .584241562420297  x 10 -23  

-7.281659645442291 x I0 -31 

6 . 3 2 6 0 3 0 7 3 8 9 6 6 5 9 3  x 10 -38 

2 . 2 7 3 8 4 9 3 2 8 1 8 8 4 7 5  × 10 -44 

5.912043206775618 × I0 -I 

4 . 5 1 6 1 0 6 9 9 3 5 9 5 1 3 9  × 10 - s  

2.856322894969714 × 10 -16 

- 5 . 3 1 2 3 3 1 5 4 0 4 5 7 9 1 7  × 10 -.23 

3.475695412280682 × 10 -30 

3 . 6 8 6 0 4 8 7 3 5 1 8 6 7 5 8  × 10 - 3 7  

3 . 3 7 0 3 1 7 4 0 1 0 5 5 8 4 5  × 10 -43 

35 

- 6 . 0 3 2 3 1 6 6 6 4 3 8 8 1 4 8  x 10 -9  

- 4 . 5 2 5 9 5 2 8 3 4 4 1 5 3 5 4  x 10 -16 

- 1 . 9 7 4 3 0 4 6 0 2 5 4 4 3 7 4  x 10 -23  

-5.245009573501727 x 10 -31 

- 8 . 8 7 5 4 4 9 3 5 4 0 4 2 7 2  × 1 0  -39  

-9.93054644122186 × 10 -47 

i 1 .253856873891649  x 10 -50 

37 38 

-2.122177182350715 × lO -8 

-2.743111103464194 x 10 -16 

5 . 0 9 2 4 9 0 7 5 8 0 7 3 6 9 3 ×  10 -24  

1 .142912702558767  x 10 -32 

-7.406812860704781 x 10 -39 

-2.019602205408182 x 10 -46 

2.536169134780216 x 10 -52 

8.02920876707103 x lO -I  

1.911274555252725 X 10 -8 

-2.434891556327175 x 10 -17 

-2.598492653811124 x 10 -24 

7.806577174288525 x lO -32 

-2.136777280783503 x 10 -39 

-1.528700910628074 x'lO -46 

-5.377901999001163 x 10 -53 

40 41 

1.33588637256797 

-2.222877700343102 x 10 -9 

- 7 . 7 8 1 1 1 0 2 4 4 3 3 3 5 8 3  × 10 -17 

1 .23300080075066  x 10 -24 

- 1 . 8 2 6 7 6 1 1 5 8 7 6 6 1 0 7  x 10 -32 

4.798290114278227 x 10 .40 

-2.083888698912835 x i0 "47 

- 3 . 9 9 4 5 2 3 8 6 9 7 6 7 2 3  × 10 -54 

1.033497023010075 x 10 -61 

43 

1 .164911977536833  × i0  - s  

4 . 0 6 8 5 1 5 0 2 2 2 4 7 7 9 4  x I0 - I '  

- 5 . 5 8 6 8 6 0 9 7 9 4 7 0 2 6 1  × 10 -25  

2 . 6 4 6 0 4 1 5 7 7 3 7 5 4 6 5  x 10 -33 

3 . 1 6 1 3 5 4 5 0 0 5 6 9 5 8 9  x 10 -41 

-2.283643210069411 x 10 -48 

- 4 . 0 8 1 5 5 9 6 9 6 9 3 9 9 5 1  x 10 - 5 6  

1 .857415764225622  x I0 -6~ 

5.106552332260171 x 10 -9 

1.237898502324493 × 10 -16 

1.198805920770535 x 10 -24 

-9.29118303087409 x 10 -33 

-3.847457531098831 x lO -4° 

-4.780007598610431 × I0 -45 

-3.416126089592718 × 10 -56 

6.161843595946462 × I0 -61 

44 

1 .011111294485445  

8 .56099642897334  × 10 -9  ' 

- 1 . 8 7 0 8 8 3 2 0 4 6 2 5 8  × 10 -17 ' 

- 1 . 7 8 5 8 6 8 2 0 1 2 7 2 5 5 3  x 10 - 2 5 '  

2 . 896782107262829  x lO - 3 3  ' 

- 3 . 8 7 1 5 8 0 6 7 3 0 0 4 6 8 2  x I0 - 4 ~ '  

5 .236495191096205  x 10 -49 ' 

2 .670334941512591  × 10 - °6  ' 

4.286637228246185 × 10 -63 
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Table 2. Table of  bt,.,,, , coefficients for Tt,.(O, (p) for n -- 1 and l ~ {0,1 . . . .  ,44} 

235 

m = 5  
10 
15 
20 
25 
30 
35 
40 

m = 5  
I0 
15 
20 
25 
30 
35 
40 

I = 3 0  
2.448476817539395 x 10 -s 
2.729150909570428 x 10 -15 

2.223541523901881 x 10 -22 

8.62645832774495 x 10 -30 

7.299788172714104 × 10 -37 

1.390278734957254 x 10 -41 

1 = 4 2  
1.225965666804088 × i0 -~ 

7.336055391266129 × i0  -17 

-2.057018909283102 × 10 -27 
-9.56403128492941 x 10 - 3 3  

1.547346440349331 x 10 -40 
2.864253792321392 × 10 -48 
1.869449403196465 x 10 -55 
9.13353520771848 x 10 -62 

36 
1.803441604722151 x 10 -s  
4.48552570399961 × 10 -16 
4.42763367294824 x 10 -24  

-3.304529063250246 x 10 -31  

-9.17215096845515 x 10 -39  

-6.356669301255897 × 10 -46 
-1.482301423807387 x I0 TM 

40 
1.932825739861001 × 10 -9 
8.46281746373447 × 10 -17 
2.185857402650686 x 10 -24  

3.772670014340045 x 10 -32 

4.09207555121917 x 10 -40 

3.586951882500613 × 10 -48 

9.24608924171111 x 10 - 5 6  

5.478206798694867 × 10 -60 
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